
4 October 1988 UILU-ENG-88-2253
ACT-10 L

It) COORDINATED SCIENCE LABORATORY
* o College of Engineering
o Applied Computation Theory

0I OlJCEIE Wk.*

PARALLEL
RESTRUCTURING
AND

* EVALUATION
OF EXPRESSIONS

DTIC
D. E. Muller i Z 0 3 1988

F. P. Preparata S V031peVD

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

UNCLASSIFIED
ECURITY CLASSIFTION OF THIS PAGE

REPORT DOCUMENTATION PAGE OMSNo.-070"1O

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassified None

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

2b. DECLASSIFICATIONI DOWNGRADING SCHEDULE dis tribut ion unlimitedls

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

UILU-ENG-88-2253 ACT #101

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION

Coordinated Science Lab (f applcable) Office of Naval Research and

University of Illinois N/_ _ .. National Science Foundation

6C. ADDRESS (City, State, and ZIPCO*e) 7b. ADDRESS(City, State, and ZIPCode)

1101 W. Springfield Ave. Office of Naval Research & Nat. Science Founc

Urbana, IL 61801 Arlington, VA 22217 1800 G St., N.W.
Washington,DC 205f

go. NAME OF FUNDING .SPONORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION ont cervices (If aoplicabil) JSEP - N00014-84-C-0149

Electronics Program and Nationa NSF CCR-87-03807Sc(ienre Fm,,nclat i n I

&_ ADDRESS (City, State, and ZIPCode) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

Arlington, VA 22217 & Washington, DC 20550 ELEMENT NO. NO. NO CCESSION NO.

11. TITLE (Include Securty Classfication)

"Parallel Restructuring and Evaluation of Expressions"

12. PERSONAL AUTHOR(S)
I3 Muller, D. E. and Pre arata, F. P.

13.. TYPE OF REPORT 113b. TIME COVERED 14. DATE OF REPORT (YearM0nth Day) 1S. PAGE COUNT
Technical FROM -TO I October 1988 27

16, SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on rev*r if necesary and identify by biock number)
FIELD GROUP SUB-GROUP evaluation of expressions, semiring computations,

restructuring of expressions, computational complexity,

~parallel computation, minimum depth networks
19. ABSTRACT (Continue on reverse if necessary and identify by biock number)

In this paper we describe a boolean network of size O(N 2logN) which accepts a fully
parenthesized N-variable expression over a given semiring and produces its value in
O(logN) time. The network consists of two components; a preprocessor and a universal
evaluator. The preprocessor computes the destinations of the expression terms and
routes them to the correct input terminals of the universal evaluator.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT |21 ABSTRACT SECURITY CLASSIFICATION
-"UNCLASSIFEDUNLIMITED 0 SAME AS RPT . DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) j 22c. OFFICE SYMBOL

D0 Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSFIED

i

Parallel Restructuring and Evaluation of
Expressions'

B

D. E. Muller and F. P. Preparata
University of Illinois at Urbana-Champaign'

Abstract

Iri this paper we describe a boolean network of size O(N 2 log N)
which accepts a fully parenthesized N-variable expression over a given
semiring and produces its value in O(logN) time. The network con-
sists of two components: a preprocessor and a universal evaluator. The
preprocessor computes the destinations of the expression terms and
routes them to the correct input terminals of the universal evaluator.

1. Introduction

The evaluation of tree-structured expressions is a fundamental computa-

tion encountered in several problems. The feasibility of parallel computing

has attracted considerable research interest to the restructuring of expres-

*I sions - typically arithmetic expressions - to speed up their evaluation. While

restructuring for parallel evaluation has been the main objective for some

time(BB68,M71,MP71,B73,BKM73,B74,KM75,MP76aPM7 , more recently

attention has focussed on the parallelization of the actual evaluation starting CTED

from the original expression itself. Several algorithms have been recently pro-

posed for implementation on the P-RAM model[V85,MR85,GR86,CV87,

GV8-4 88; the most efficient of these algorithms achieve time O(log N)

for an N-variable expression, and are either optimal, O(N/ log N), or near-

optimal, O(N), in the number of processors used. / I]

1This work was supported in part by NSF Grant CCR-87-03807 and by the Joint
Services Electronics Program under Contract N00014-84-C-0149.

In-

L

The evaluation of an expression in parallel could be carried out as the

combined execution of the restructuring and evaluation tasks. Indeed, in

- this paper we propose a method consisting of two cascaded phases, i.e. the

restructuring of the expression followed by its evaluation. The adopted frame-

work is the boolean network modei. Specifically, our network consists of two

components: a universal evaluator, i.e. a network designed to carry out the

evaluation of any expression with at most IV variables, 'A a pn-proceF-," ,

designed to compute the assignments to the terminals of the universal eval-

uator of the variables and connectives of the given expression. Our results,

which combine Theorems 1, 4, 5, and 6 in this paper, are summarized by the

following theorem:

Theorem A: Ar, N-variable expression E over a semiring can be re-

structured and evaluated in time O(log N) by an O(N 2 log N)-size boolean

network.

Although the term "semiring" implies that the two operations "+" and

"." may have no inverses, the present scheme permits the inclusion of their

inverses "-" and "+" in the calculation if they do exist.

A result with analogous time performance, but based on an entirely differ-

ent approach, has been developed by Buss, Cook, Gupta, and Ramachandran

(private communication].

2. Expressions

Let E be an expression over a semiring, where all variables are assumed to

be distinct. Such an expression will be called a primitive expression. Thus,

we require only that the algebraic structure to which the variables beiong

has two associative operations, conventionally "+" and ".", such that "."

distributes over *"', and that there is the additive identity 0. Obviously,

this class includes rings, fields, distributive lattices, and boolean algebras.

2

U

For concreteness of presentation, we assume E to be an expression over the

field of rationals (i.e. the operators are "+" and "-" and their inverses), but

specializations to other cases are straightforward (nowhere will commutativ-

ity be invoked).

Expression E is thought of as defining a computation tree T(E), and

is given as a fully parenthesized string, where (i) a variable a is an atomic

expression (a), and (ii) given two expressions E1 and E 2, the string (Ei3"E2)

is an expression with Y E {+, , -,'}

Example: ((((al)7 1 (a 2))3"2(a 3))Y3((a 4)-y4(a 5)))7s(a 6))y6 (aT)) is a fully paren-

L, thesized expression, with variables {aj, a2, a3, a 4, as, a6, aT} and operators

{31, 12, 73, Y 4 , 15, _M}- It is a trivial exercise to show that an expression with

N variables (and N - 1 operators) has 4N - 2 parentheses, i.e. a total of

6N - 3 symbols.

A term of an expression is either a variable or an operator. Note that a

variable occurs between two facing parentheses "()" and an operator between

two opposing parentheses ") (". The label A(a) of a term a is its level in T(E),

i.e. the number of edges in the path between the root and the node of the

m term itself (thus, the root has label 0). It is easily seen that the label of a

term is given by: (number of left parentheses to its left) - (number of right

parentheses to its left) - 1. Thus, if we associate the integers +1 and -1 with

each left and right parenthesis of E, respectively, then the labels of the terms

are obtained by subtracting 1 from the prefix sums over the subsequence of

parentheses of E. It is well-known (see, e.g.[LF80]) that such prefix sums can

be computed for an N-variable expression by an O(N)-node tree network in

time O(log N).

3. The Universal Evaluator.

The universal evaluator network is based on a restructuring scheme due

3

n

to Brent[B73], which we now review.

The variables of an expression are assumed to be of two kinds: atomic

variables al,...,a,. and free variables xl,...,x,. An expression is referred

to as an A- or E-expression depending upon whether or not it contains free

variables, respectively. Normally we will use the letter "E" for E-expressions

and the letter "A" for A-expressions. The weight "I I" of an expression is the

number of atomic variables it contains. The symbols 0 and € will be used to

represent the operator that occurs at level 0 in the tree corresponding tc an

E- and an A-expression, respectively.

Given a E-expression E with N variables, 2j-1 < N < 2J - 1, the break-

point of E is a unique node v of T(E), such that the expression associated

with the st btree rooted at v is (E'OE"), with max(IE', IE"!) < 2 J1 - 1, and

IE' + [E"I > 2J-'. If we excise T(Z'OE") from T(E) and replace it with a

free variable x (see Figure 1), we obtain the tree of a A-expression Ao x with

JAI = IEI- (IE'I + IE"I) < N - 2j-1 < 2j- 1 - 1. We call A o (E'OE") the

canonical decomposition of E.

Analogously, given a A-expression A o x with N atomic variables, 2J-1 <

N < 2" - 1, the breakpoint of A o x (a 4-breakpoint) is a unique node v of

T(Aox) such that the expression associated with the tree rooted at v is either

((A' o x)OE) or (EO(A' o x)), with IA'j < 2 - - 1, and IA'I + JEl >_ 2J 1.

Again, if we excise from T(A o x) the subtree rooted at v and replace it

with a free variable y (see Figure 1), we obtain an A-expression (A" o y),

with IA"l = IAI - (IA'I + fE[) _< N - 2J-' < 2j-' - 1 (see Figure Ib). We

call A" o ((A' o x)OE), or A" o (EO(A' o x)) as appropriate, the canonical

decomposition of A o x.

Brent's scheme is based on the following standard forms for E- and A-

expressions:
E1 Alx +A 12

T.2, A A 21 x + A22 '

4

I

E AA ox A

,A ox
A " A " y A

A' E

Ax

Figure 1: Canonical decompositions of E- and A-expressions.

b

' 5

m

where El, E 2 , All, A12, A 21 , A 22 are division-free expressions. An E-expression

E is given by the pair (El, E 2) and an A-expression A o x by the quadru-

* pip (All, A12, A21, A 2 2). (Notice that for division-free arithmetic expressions,

E2 = A 22 =1 and A 21 = 0). The canonical decomposition E = A o (E'OE")

yields:

E1 = numerator of All LE1 EL'} + A1 2 (1)

E 2 = numerator of (A 2 3 (L1) + A 2 2)
G2 E2" A

with JEl < 21 - 1 and JE'J, JE"j, IA'I 5 2 j-' - 1.

Similarly, the canonical decomposition A o x = A" o ((A' o x)OE) yields:
,,~~~A (A[,x + A __E + '' 2

Alx + A 1 2 = numerator of A" A,',-+-A22 + E2) + A" (2)
IA" + Ai2 +

A 21x + A 22 = numerator of All X+A' 2 E) + All

* with JAl < 2j-1 and IA'I, IA", < 2a-'-, IE < 2'-i. Notice that Relations

(1) and (2) involve no division; this and relation E - E 1/E 2 indicate that

the evaluation of E involves a single division at the end.

These conditions on the weights of the terms of the decomposition readily

establish that the depth of the restructured trees for both E and A are O(J).

Moreover, the above decompositions yield the structures of universal evalua-

tors. We shall use script letters "E" and "A" to denote universal evaluators

for E- and A-expressions, respectively. (Note the distinction between an ex-

pression - letters "E" and "A" - and the corresponding universal evaluator

networks - letters "E" and "A".) It must be underscored that a universal

evaluator network is itself described by an expression; however, the universal

6

..

EJ)AO'-') AU-I) UI

Figure 2: Recursive structures of universal evaluators of E- and A-
expressions.

evaluator suited for all expressions of weight not exceeding a fixed bound B
has substantially larger weight than B, as we shall see shortly. Specifically,

symbo! 6"1 _) cnote the univnFrpl evalitatcr qiited for an expression E such
* that 2j -' < IEl _ 2i - 1. Analogously, we define A (j) . The structures of E()

and AU)j are shown in Figure 2, where 0- and O-combiners are respectively

fixed-size modules implementing computations (1) and (2). Denoting by ej
and aj the numbers of input terninals of &Ct;wid i ," amd respectively,

we readily have the following recurrence relations:

{ e, = 2ej_1 + aj-1 +1
aj =2aj.-1 +e, +1

which, combined with the initial values el = 1 and a, = 2 yield

(41 - 1) (4) - 1)
' ei 3 aj = 2 for 1,2, (3)

7

I

0 -combine 7 1 2

0 0
0 0

I 2

Figure 3: Biasing of AMI 1 to evaluate (x~a).

Letting J = [log2 NJ, ej = (4 o9 2 N1 - 1)/3 = O(N 2) is the number of

input terminals of the universal evaluator for N-variable expressions, with

2
J - 1 < N < 2 J - 1.

It is a simple exercise to verify that E() for an input variable a is a trivial

circuit consisting of a straight wire carrying the variable and of a second

output with the constant bias 1. Network A 1) for an A-expression (xoa),

consisting of a single atomic variable a and an operator 0, is realized by the

* biasing of the standard 0-combiner shown in Figure 3. It is immediate to

verify that the default biasings of the terminals of the universal evaluator are

value "0" for a variable terminal and operator "+" for an operator terminal.

We now consider the latency (i.e., the computation time) of the universal

evaluator. Let 6(E()) and b(A(')) respectively denote the latencies of E(U)

and of A (') and let ro and re respectively denote the delays of the 0- and

9-combiners. From the schemes of Figure 2 we deduce:

{ 6(E(J)) = max(6(E('-)), (A('-'))) +t
6(A()) = max(b(A(-')),b((0-1))) +r.r.

We readily have b(A()) = max(b(A(-1)), b(,(')) + re, b(A(j- 1)) + re) +r, =

max(b(E(j- 1)), b(A(j- 1)))+ 7"o +ro , which yields 6(A(W)) = b(S(O)) +r,6 and

8

U7

6(60))= 6(A('-1)) + re 6(V(O-')) + r + 7O. From the condition 6(e.()) = 0

we have

6(E (J)) = (J - 1)(ro + T-)= ([log NJ - 1)(70 + 7O).

(Here and in what follows, all logarithms are assumed to be base 2.) We also

note that delays can be trivially inserted so that (J) can be used in pipeline

fashion.

We summarize the preceding discussion with the following theorem:

Theorem 1. The universal evaluator for an N-variable expression has depth

O(log N) and size O(N 2).

4. Parallel restructuring

3 In this section we discuss the overall scheme whereby the terms of a given

expression E (variables and operators) are applied to the terminals of the

universal evaluator E(PoglE.l1). A flow-diagram of the process outlined in

the introduction is given in Figure 4. The expression E is applied at first

U to the preprocessor, which computes for each term a of E an integer p(a),

called the assignment of a. Subsequently, for each term a, the pair (p(a),a)

is formed. The router directs term a to the terminal of index p(a) of the

universal evaluator. For brevity, the same denotation will be used for a term

of E and for the corresponding node of T(E).

Definition. Let w be a node of T(E), and E, the expression represented

by the subtree of T(E) rooted z w. In T(E) a left (resp. right) ancestor

of a node v i, any node such that v belongs to its right (resp. left) subtree.

For v in T(E,,), we define p(vlw) - the assignment of v relative to w- as the

index of the terminal of c(Pog1E-l) to which term v should be applied. We

9

i

Assignment
computation

~Universal
E , Pairing Ruig evaluator

Preprocessor

Figure 4: Flow diagram of the overall restructuring/evaluation process.

also define p(vlroot(T(E))) __ p(v), the (absolute) assignment of v.

We now analyze the calculation of p(). The structure of the universal

evaluator E (') for an expression with at most (2 ' - 1) variables exhibits the

following properties: 2

(i). In the canonical decomposition Ao(E'OE"), the component expressions

appear in the left-to-right order E', E", A o x. Moreover, we assume

[E'I > i.E"I.

(ii). In the canonical decomposition A" o (Ek(A' o x)) or A" o ((A' o x)4E),

the component expressions appear in the left-to-right order A' o x, E,

A" 0 y.

Lemma 1. If the orders of the positions of the terms in E and of their

assignments to the terminals of E(J) are to be consistent, then the original
2 1f the operations are not commutative, then we introduce new denotations for the

original operations with the operands in reverse order.

10

0

computation tree T(E) must be rearranged to satisfy the following condi-

tions:

1. Each free variable is the left child of its parent;

2. At each 0-breakpoint the A-expression is associated with the left sub-

tree.

3. At each 0-breakpoint the heavier subexpression E' is associated with

the left subtree.

Proof: We say that a free variable is terminal if it was generated by the

removal of an expression of the form (E'OE"). Proof of (1): If the free

variable x is terminal, then by Property (i) the expression (E'OE") is to the

left of Aox, which implies that each term of A is to the right of (E'OE"), i.e.,

*] x is a left child. If the free variable y is not terminal, then by Property (ii),

the expression EO(A'ox) - or (A'ox)OE - appears to the left of A"oy, which,

again implies that y is a left child. Proof of (2): An immediate consequence

of Property (ii), by which (A' o x) appears to the left of E. Proof of (3):

Trivial, by Property (i). 03

We claim that the tree T'(E) obtained by rearranging the original T(E)

in order to comply with Conditions (1), (2), and (3) above, the left subtree of

each internal node is at least as heavy as the right subtree. This is trivially

so for a q-breakpoint. For a 0-breakpoint, the left subtree is, by (2), an

A-expression of the form A' o x. We distinguish two cases: (a) IA' = 0, i.e.,

the A-expression reduces to a free variable x. In this case x is terminal and

originated by a decomposition of the form Ao(E'OE") with IE'I + IE"I > IAI.
Since the left subtree of the parent of x in T'(E) has weight at most JAI, the

claim holds. (b) IA'l > 0. In this case we have the situation illustrated in

'6 11

6!

I

or

E AA

x is termin x is nonterrninal,y is terminal

Figure 5: Illustration of the chaining of free variables.

Figure 5. If x is terminal, then the expression of the tree rooted at node € is

(A'oE*)¢E, with JE*1 > IA'I+IEI (by the selection of 0-breakpoints) and thus

SIA'i + IE*I > lEt. If x is not terminal, then there is a A-expression (A* oy),
with y terminal, such that the expression of the tree rooted at node 0 is

A'o(A*oE*)OE, with [Eli _< IA'I+IA*I+IEI, and thus IA'I+IA*I+IE*l > JEJ.
This establishes the claim.

Referring to the rearranged tree T'(E), for each node v we define two
companion nodes r(v) and 1(v) as follows:

r(v): the farthest right ancestor of v such that each node in the path from

v to r(v) is a right ancestor of v. (Note, r(v) always exists and may coincide

with v.)

1(v): the closest left ancestor of v, i.e. l(v) is the parent of r(v). (Note,
1(v) may not exist, in which case we say l(v) = E, the empty node.)

We then have

p(v) = p(vlr(v)) + p(l(v)).

Indeed v is on the leftmost path of the computation tree T(Er(,)), and

12

p(vlr(v)) is the assignment term v would receive in T(Er(,)); moreover, v

is in the right subtree of 1(v), so that the assignment of v must be offset by

- p(l(v)). Iterating the above formula we obtain

p(v) = p(vjr(v)) + 1_ p(wjr(w)) (4)
wEA(v)

where A(v) is the set of left ancestors of v in T'(E).

Formula (4) reduces our problem to the calculation of p(vlr(w)) for an

arbitrary v in E. The value of p(vlr(v)) depends exclusively on the weights

L(v) and R(v) of the left and right subtrees of v, respectively. Indeed, in the

semiclosed interval (rnax(L(v), R(v)), L(v) + R(v)] there is a unique integer

of the form p2q with largest value of q. Let lb._ 2 ... bq+lO ... 0 be the binary

spelling of p2q.

Suppose at first that p = 1 (i.e., s - 1 = q). Term v is a 0-breakpoint,
and its terminal of the universal evaluator occurs immediately to the right

of a subnetwork £(,-), i.e., p(v) = e,- + 1.

When p > 1, term v is a q-breakpoint, and its terminal of the universal

evaluator occurs after the following sequence of subnetworks (refer to Figure

* 2):

1.), a terminal for a C-operator, E(3') (for a total of 2e,_ 1 + 1

terminals).

2. For j = s - 2 down to q + 1: AU) , a terminal for a O-operator, £(i+'),

(for a total of aj + ej+l + 1 terminals) if and only if bj 1.

3. A(M.

Therefore

-2

p(vlr(v)) =(2e.._ + 1) + E bj(a + ej+ +)+ aq +1
j=q+l

13

ML-- - - m m I+ I I

b

Using equalities (3) we obtain

Pi
45- 1 - 1 -2 4V - 1

p(vlr(v)) = 2. +1+ E b,2.41+2 3 +1
3 3=q+l

s-2 s-2 q-I

= 214'+ Z 2bj.4+2E4+2
j=O j=q+I j=O

s-2 a-2 q-1

= 4 1-Z4j-l+ 2b.4j+2 4+2
j=O j=q+ I j=O

8-2 q-1= 4 1 + E (2bi -1)4j -4V +FV + 1

j=q+l j=O

a-1

= E-'(2cj - 1)4j + 1 (5)
j=O

where C,-ac,-2... CO is the binary spelling of p2q - 1.

From a computational viewpoint we note: If m,.- ... m0 and s,-... SO

are the binary spellings of max(L(v), R(v)) and of L(v) + R(v), respectively,

then (s - 1) is the largest value of j for which m3 = si = 1, and q is the

* largest value of j for which mj = 0 and si = 1. Thus in time O(log N) we

can obtain c,_c 5,_ 2 ... co. To obtain p(vlr(v)) from this number we perform

the following transformation

c- (J) d() d() - 1 1 1 ifci=0
c .2j+2 *2j+1 .2j -1 0 0 1 if Cj = I

and add modulo- 2 bit-by-bit the equally-indexed bits of the corresponding

s binary numbers.

The calculation of the subtree weights L(v) and R(v) is the topic of

Section 5. In Section 6 we shall address the question of the distribution of

the offsets p(wjr(w)) for w E A(v). Finally, Section 7 will discuss the routing

of v to the terminal of g(i) indexed p(v).

14

5. Calculation of Subtree Weights

The expression E consists of a sequence of parentheses, variables, and

* moperators. We shall write k to denote the subsequence of E formed by

erasing the parentheses, leaving just the operators and variables. We note

that the members of k are in one-to-one correspondence with the nodes of

the tree T(E), and we have seen at the end of Section 2 that a label A(v),

representing its level in T(E), may be found for each such node v.

Let v be a variable in the expression E, so that v corresponds ,o a leaf

of T(E). There is a unique path from the root of T(E) to v. We write this

path as vo, v,.. . , vp where v0 is the root of T(E) and vp = v. For each node

v, in the path A(vi) = i, and if i is less than p, then vi is an operator.

We now wish to investigate the properties of the subsequence of t corre-

sponding to the path vo, vl,..., vp of T(E). We begin with the following:

Lemma 2: In the sequence E, for any i < p there is no element between

vi and vp whose level is less than i. Furthermore, if x is any operator or

variable of some level i < p such that every element between x and vp is of

* level greater than i, then x must be vi.

Proof: The variable vp is either in the right or the left subtree of T(E,,) (cf.

Definition 1). Let us assume first that it is in the left subtree so that vp is

to the left of vi in E. Then there is a subsequence of E of the form (E'viE")

such that v. occurs in E'. All the operators and variables in E' have level

greater than i so we may conclude that all elements of t between vp and vi

have level greater than i. Furthermore, if we assume that x is some variable

or operator to the left of vp in k which has level no greater than i, and such

that every element of E between x and v, is of level greater than i, then x

must be the first operator immediately to the left of (E'viE"). Since it must

have level less than i it cannot be vi, and the conclusion follows. Second,

15

if we assume that vp is in the right subtree a precisely analogous argument

gives the same result. 01

Now, starting with vp we define the first forward subsequence FS(vp)

of E, starting with vp with monotone decreasing levels to consist of elements

a,, a2,..., ar such that (i) a, = vp, (ii) for each ai before the last, the element

ai+1 is the first member of Fk to the right of ai having a smaller level than

a,, and (iii) there is no element of k to the right of a, having a smaller level

than a,.

A similar definition describes the first backward subsequence BS(vp) of

E, starting with vp with monotone decreasing levels. The only difference is

that the word "right" replaces the word "left" in all places in the definition.

The corresponding subsequence has the form b,, b,- 1 ,..., b, and is such that

m (i) bi = vp, (ii) b,+ is always the first member of E to the left of bi having

smaller level than bi, (iii) there is no element of to the left of b, with

smaller level than b,.

Theorem 2: A path vo, v1,.... ,vp on T(E) from the root v0 to a leaf vp

corresponds to FS(vp) and to BS(vp).

Proof: Using the previous lemma, we see that the members of the path are

precisely the elemcnts satisfying the conditions for being in either the first

forward or first backward subsequence starting with vp. ']

If v is a node of the tree T(E) which is not a leaf, then it represents an

operator. The subtree T(E,) of T(E) associated with v corresponds to an

expression of the form (E'vE"). The weights L(v) = IE'I and R(v) = IE"i are

the weights of the left and right subtrees of T(E,) respectively. Our objective

is to develop a procedure to determine L(v) and R(v) for each operator node

16

Ii

Figure 6: Circuits to compute (L(v), R(v)).

v of T(E) which can be carried out in time O(log N).

The circuit to compute L(v) and R(v) contains a binary tree correspond-

ing to each variable w in E, a typical one of which we shall call T,. The

edges in the tree are serial transfer paths and the leaves receive the members

a of E, with the exception of w, in their given order (see Figure 6). The

label A(a) of each member a of k is also applied to each corresponding leaf

1 of T. These labels are also transmitted to the internal nodes of T, in such a

way that each internal node p receives the minimum label of all the leaves in

its subtree. This is accomplished by sending messages from the leaves to the

root of T, so as to give each internal node p the minimum label received by

its two children. This operation can clearly be carried out in time O(log N)

giving each node p of T,, a label b = A(p) by endowing each node with a

one-bit comparator and feeding the labels most-significant-bit first.

Two messages called tokens are sent from the root of T, along the left and

right edges of T,, connected to the root. These tokens have the form (L, 6)

and (R, 6), where L signifies "left" and R "right" and 6 is the label A(w). We

17

ncw trace the behavior of the left token (L, 6) as it travels along the edges of

T,,, towards the leaves. An analogous behavior will hold for (R, 6), but with

"left" and "right" interchanged.

When starting out from the root, if the first node encountered by (L, 6)

(i.e. the left child of the root) has label no less 6, then the token is erased,

otherwise, it proceeds as follows.

After leaving the root of T,, the token (L, 6) passes on a path along the

edges of T, encountering various nodes until it finally comes to a leaf, where

it stops. We shall see that this leaf of T, must correspond to an operator v

such that w is in the right subtree of T(E,). It will therefore contribute 1 to
'a

the quantity R(v). The way that the token (L, 6) chooses the correct path is

now described.

Since T, is a binary tree, all its internal nodes are of degree 3 except the

root which is of degree 2. When the token (L,6) reaches an internal node P

of degree 3 it takes either the left or the right descending branch according

to the following rule, where the labels on the left and right children of P are

6 L and 6R, respectively.

P! Rule for left-token propagation

1.begin if 6 R < 6 then

2. begin (L, 6) proceeds on the right edge;

3. if bL < 6 R then (L, 6R) is created and sent on the left edge

4. end

5. else (L, 6) proceeds on the left edge

end

Note that token (L, 6 R) created at Line 3 follows the same rule as the

former token except that, since it has a different label (namely 6 R instead

of 6), its interactions will be correspondingly different. An analogous Rule

18

to

m

holds for (R, 6) with the following substitutions: bR -6 6 L, R -+ L, left -*

right , right -* left .

m Naturally, all the generated tokens as well as the original two tokens are

strings of O(logN) bits that propagate simultaneously in T, in bit-serial

fashion. Since they all move on paths of the binary tree, they do not retrace

their paths and hence the time required is determined by the sum of the

length of their representation, which is O(log N), and of the maximum path

length from the root to a leaf of the binary tree, which is also O(log N).

It remains to prove the following.

Theorem 3: The leaves of T, which receive tokens are exactly those which

correspond to operators on the path of T(E) from w to it root. Furthermore,

those receiving a left token have w in their right subtrees (are left ancestors

of w), and those receiving a right token have w in their left subtrees (are

right ancestors of w).

Proof: We shall show that those leaves in the left subtree of Tw which receive

left tokens correspond to just the members of BS(w). An analogous result

n applies to the right subtree. Then, using Theorem 2 the result is proved.

There are three parts to the proof. First, we show that the original token

(L, 6) goes to the leaf of Tw, corresponding to the first member of k to the

left of w having level less than 6. To show this, we imagine that each edge

of T7 has a label A(a) which is the same as the label of the child node a to

which it connects. We now trace the path from the root of T in the left

subtree taken by the original token (L, 6). It can never follow an edge with

label as large as 6, but otherwise it will dlways go to the right if possible until

it reaches a leaf. All parts of the subtree which are to the left of this path

must have labels which are greater than or equal to 6, by the mechanism

that assign labels to the internal nodes of Tw. On the other hand, the label

19

S

of the leaf reached by the token must be less than 6 since it lies on the path.

This proves our first assertion.

Second, we show that any new token (L, 6') generated in the process must

go to one of the members of BS(w). At the point of its initiation, the token

(L, 6') cannot have passed to the right of any part of the left subtree with

label less than 6', because the tokens from which it was generated had labels

greater than 6'. Following its initiation, the token (L, 6') follows a path such

that all parts of the subtree which are to the right of this path must have

labels at least as large as 6'. Thus, the leaf it reaches is the first one with

label less than 6' and is thus on BS(w).

Third, we show that every member of BS(w) must receive a token. Let

the operator a with level A be a member of this subsequence. From the

definition, we know that A < 6 and that all leaves of the left subtree of T,

which occur to the right of a have level greater than A. Tracing a path on

T, from a to the root, we see that this entire path has labels at most A, but

that tributaries to the right of this path have labels which are greater than

A. Now, consider a token starting out on this path. In the beginning it has

label 6 and as long as the path goes to the right it will retain this label and

follow the path. Now, if the path goes left, it either retains the label 6 or else

obtains a new label 6' < 6. However, 6' > A because the path is ultimately

connected to the leaf of a. Thus, a left token will ultimately reach a.

Now, by Theorem 2: we see that the leaves of T,,, reached by tokens are

exactly those corresponding to those operators on the path of T(E) from its

root to the leaf corresponding to w. Also, those receiving left tokens have w

in their right subtrees and those receiving right tokens have w in their left

subtrees. 0

The final steps for computing L(v) and R(v) for each operator v of E

20

I

must be carried out by adding the numbers of left and right tokens received

by each v. This can be done by using a separate pair of adders for each

* uoperator. Such an adder is in effect a parallel counter using N single-bit

inputs corresponding to the N variables, and can be constructed as a binary

tree of depth log(N). The computation time is O(logN). In Figure 6 we

have a global illustration of the machinery implementing the computation of

L(v) and R(v) for all internal nodes v of T(E).

Combining the foregoing discussion with the results of Section 4 on the

conversion of L(v) and R(v) to p(vlr(v)), we have the following theorem:

Theorem 4. The computation of the relative assignments p(vlr(v)) for each

term v of N-term expression E can be done by a boolean network of size

O(N 2) in time O(log N).

6. Distribution of the Offsets

The last step needed to calculate the second term in the expression for

p(v), (formula (4)), for each vertex v of T(E), requires forming the sum

* ,p(wlr(w)) over all the ancestors w of v in T(E) such that v is in the

lighter subtree of w.

To carry out this calculation we can use the same structure that was used

to calculate the weights L(v) and R(v) and illustrated in Figure 6. Again,

we let b A A(w). Tokens of the form (L, 6) and (R, 6) are sent from the root

of each tree T,, but in this case the rules obeyed by the tokens are different

from those described in Section 4. (Notice that the token labels L and R

are used here to aid the explanation but need not be implemented.) We also

assume that the functions L(w) and R(w) have already been calculated.

Now, for each node v, we wish to add the offset of w provided that v

is in the lighter subtree of w. We begin by comparing L(w) with R(w) to

21

I

determine which of these two numbers is smaller and in this way decide into

which of the two subtrees of the root of T, to send the token.

0In order to send the token to only those leaves of To which correspond to

descendants of w in T(E). we must choose the rules suitably. For concrete-

ness, let us assume that R(w) < L(w), in which case the token (R, 6) enters

the right subtree of the root of T.. Then all the leaves of T corresponding to

nodes v of T(E) that must receive the offset p(wlr(w)) occur in a consecutive

sequence at the left of this subtree. Specifically, this sequence of leaves is

bounded on the right by a leaf A corresponding to a (right) ancestor of w,

which is associated with a label A' < S. It follows that the token must be dis-

tributed exactly to the left subtrees of the leaf-to-root path in Tb, originating

in i. Therefore we have the following rules:

(i). If the descending token (R, 6) enters a vertex of T, whose label is less

m then 6, then the token follows the branch to the left child.

(ii). If the descending token enters a vertex whose label is not less than 6,

then the token is duplicated and both children receive (R, 6).

(Note: (1) It is not possible for the label of a vertex reached by this process

to be the same as that of w. (2) If the leaf u exists, there must be at least

one leaf to its left in the right subtree of T. Therefore, p can never receive

a token.)

An entirely analogous set of rules applies to the original token (L, 6),
wich is created when L(w) < R(w). In this case (L,b) is sent into the left

subtree and the above rules are used with "right" and "left" interchanged in

all places.

Finally, all the tokens will reach leaves of T, which represent vertices

in the lighter subtree of T(E) whose root is w. To each of these leaves we

22

attach the offset p(wjr(w)) calculated by the method described in Section 4

and given by Formula (5).

* The last step consists of adding, for each term v of k, the offsets obtained

from all the trees T ,. This may be done, again in time 0(log N), by the

same adders which were used for computing the functions L(v) and R(v),

as described in Section 5. (Note that in this case each adder tree functions

as a full-fledged adder of O(N) integers of 0(log N) bits.) The result is the

assignment value of the p(v) according to formula (4).

We summarize the discussion as follows:

Theorem 5. The computation of the (absolute) assignment p(v) for each

term v of an N-term expression E can be done by a boolean network of size

O(N 2) in time 0(log N).

We next see how these assignments are used to accomplish the routing of

the terms of E to the universal evaluator.

7. Routing to the universal evaluator

3 Once the set of N integers {p(a) : a a term of E} is available, the pairs

(p(a), a) are formed and supplied to a routing network, where p(a) functions

as the address of record a. As usual, J = [log Ni.

Let 82- (for an integer s) denote the 2"-input/2'-output butterfly network.

The terminals of 82. are numbered from 0 to 2' - 1 from left to right and the

stages of 132. are numbered from s - 1 to 0 from input to output. Given an

integer r E [0, 2' - 1], we let BIT,(r) be the coefficient of 2j in the binary

representation of r. Suppose that the (address, record) pair (r, R) is applied

at any input terminal of B2.; we say that R is obliviously routed to output

terminal r if at stage j record R is routed on the right or on the left outgoing

branch depending upon whether BIT,(r) = 1 or 0, respectively. We have

23

'I

the following lemma:

* Lemma 3. Let (ro, r 2 ,... ,rp-l),p 2-, be a sequence of distinct integers

in the range [0,2' - 1], sorted in ascending order. Pair (ri, R,) is applied

to input terminal (c + i) mod 2' of 82. (for some fixed c E [0, 2' - 1]), and

Ri is obliviously routed. Then the routing paths of the p records are vertex

disjoint.

Proof: Sequence (r0,...,rp_1) applied to B 2. as in the statement of the

Lemma is said to be well-positioned in 125. To prove the lemma, it suffices

to show that the oblivious routing through Stage (s-i) is free of collisions and

yields two sequences (ru,.. ., rk) and (rk+,.. .,rp- 1), with rk < 2 ' - 1 < rk+1,

which are respectively well-positioned in the left subnetwork 82.- and right

subnetwork 52.- that are obtained by removing Stage (s - 1) from B 25.

A collision may occur only between two elements of the input sequence

applied to two terminals of B2. situated 2'- 1 positions apart. It is immedi-

ately realized that no collision occurs for p < 2" 1, so we consider p > 2" .

If c < 2 -- p- 1, then BIT,_.(ri) :A BIT,_(ri+2.-i) (for any i = 0,...,p- 1),

g for, otherwise BIT,_I(ri) = BIT,_.(ri+,) = ... = BIT,_I(r+ 2,-i) because

(r 0 ,... ,rp-I) is sorted. But this implies that there are at least 2*-I + 1 dis-

tinct integers in [0,2" - 1] with identical most-signficant bit, which is false.

An analogous argument holds when c > 2' - p - 1, thus establishing the first

part of the lemma.

To prove the second part, we consider the case c + p - 1 < 2', the other

case being analogous. If neither interval [c, c + k] or [c + k + 1, c + p - 1]

contains 2 1 - 1, then (ro,...rk) and (rk+l,.. .rp- 1) are each applied as a

single segment in the left and right half, respectively. Otherwise, one of them.

say (r0,... rk), is split into segments (ro,.. ., r 2,-,-_,) and (r2'-....,rk).

which are jointly applied to form a well-positioned sequence in the left half;

24

the other sequence is applied as a single segment in the right half. In all cases
we obtain well-positioned sequences in the left and right B2.- 1 subnetworks.

To carry out the routing, we could sort the set {(p(a), a) : a a term of E}

in ascending order by p(a) and apply the sorted sequence to the leftmost

segments of inputs of the appropriate butterfly network for oblivious routing.

The latter is B 22J-1, since, for J > 1 , 2 2J-2 < (4 J- 1)/ 3 < 22J - 1 and therefore
each p() is in the range [0, 2 2J- 1 - 1]. However, some pruning of B 2 2,-2 is

possible, since at most 2J+1 - 3 terminals are used at the input of Stage

(2J- 2), 2 (2J+1 - 3) at the input of Stage (2J - 3), and so on, until we reach

Stage J, where more than 2 2J-2 inputs are used. In Stages (2J - 2), (2J -
3),..., J we will remove from B22J-1 all nodes that are not reachable by any

of the input terminals with index > 2j+ 1 - 4. In the subsequent Stages

J - 1, J - 2,... , 0 we will remove all nodes that are not reachable by any

of the output terminals with index > ej = (4 J - 1)/3. We leave it as an

exercise to show that the number of branching nodes of the pruned B 2 2J-1

* is ((3J - 1)22J + 1)/9 + 2 2- - 3.2 1 - 6 = O(N 2 logN). The routing is

obviously accomplished in time O(log N). Since the preliminary sorting can

be done in time O(log N) by a mesh-of-trees [MP75,L84] with O(N 2) leaves

we conclude:

Theorem 6. Routing of the expression terms to the terminals of the univer-

sal evaluator can be done in time O(log N) with equipment of size O(N 2 log N).

References

[B73, R.P. Brent, "The parallel evaluation of arithmetic expression in
logarithmic time," in Complexity of Sequential and Parallel Nu-

25

merical Algorithms, 83-102, Academic Press, N.Y., 1973.

[B74] R.P. Brent, "The parallel evaluation of general arithmetic expres-
In sions," J. ACM, 21, 2 (April 1974) 201-206.

[BB68] J.L. Baer and D.P. Bovet, "Compilation of arithmetic expressions
for parallel computation," Proc. IFIP Cong. 1968, North-Holland
Pub. Co., Amsterdam, 340-346.

[BKM73] R.P. Brent, D.J. Kuck, and K. Maruyama, "The parallel evalua-
tion of arithmetic expression without division," IEEE Trans. on
Computers, C-22, 5, (May 1973) 532-534.

[BV85] I. Bar-On and U. Vishkin, "Optimal Parallel Generation of a Com-
putation Tree Form," ACM Trans. Prog. Lang. and Sys., 7, 348-
357, 1985.

[CV87] R. Cole and U. Vishkin, "The accelerated centroid decomposition
technique for optimal parallel tree evaluation in logarithmic time,"

*TR, Courant Institute, June, 1987.

[CV88] R. Cole and U. Vishkin, "Optimal parallel algorithms for expres-
sion tree evaluation and list ranking," Proc. A WOC 88, VLSI Algo-
rithms and Architectures, Corfu, Greece (Springer-Verlag)(1988),

*I 91-100.

[GR86] A. Gibbons and W. Rytter, "An optimal parallel algorithm for
dynamic expression evaluation and its applications," RR 77, Dept.
of Computer Sci., Univer. of Warwick, April, 1986.

[KD88] S.R. Kosaraju and A.L. Delcher, "Optimal parallel evaluation of
tree-structured computation by raking," Proc. AWOC 88, VLSI
Algorithms and Architectures, Corfu, Greece (Springer-Verlag)
(1988), 101-110.

[KM75] D.J. Kuck and K. Maruyama, "Time bounds on the parallel eval-
uation of arithmetic expressions," SIAM J. Comput. 4, 2, (June
1975), 147-162.

26

[L84] F.T. Leighton, "New lower bound techniques for VLSI," Math.
System Theory, 17 (January 1984), 47-70.

* [LF80] R.E. Ladner and M.J. Fischer, "Parallel prefix computations," J.
ACM, 27, 4(October 1980), 831-838.

[M71] K. Maruyama, "On the parallel evaluation of polynomials," IEEE
Trans. on Computers, C-22, 1, (Jan. 1973), pp. 2-5.

[MP71] I. Munro and M. Paterson, "Optimal algorithm for parallel polyno-
mial evaluation," Proc. IEEE Twelfth Annual Symp. on Switching
and Automata Theory, Oct. 1971, 132-139.

[MP75] D.E. Muller and F.P. Preparata, "Bounds to complexity of net-
works for sorting and for switching," J.ACM, 22, 2, (April 1975),
195-201.

[MP76] D.E. Muller and F.P. Preparata, "Restructuring of arithmetic ex-
pressions for parallel evaluation," J. ACM23, 3, (July 1976), 534-

m1 543.
[MR85] G.L. Miller and J.H. Reif, "Parallel tree contraction and its ap-

plications," Proc. 26th IEEE Symposium on Foundations of Com-
puter Science, 478-489, 1985.

n [PM76] F.P. Preparata and D.E. Muller, "Efficient parallel evaluation of
boolean expressions," IEEE Trans. on Cc-nputrrs, C-25, 5 (May
1976), 548-549.

27

